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The
RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, U/I-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Ciear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.
The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to

conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.
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This report describes an approach to student modeling for intelligent tutoring systems based

on an explicit representation of the tutor's beliefs about the student and the arguments for

and against those beliefs (called endorsements). A lexicographic comparison of arguments,

sorted according to evidence reliablity, provides a principled means of determining those

beliefs that are considered true, false, or uncertain. Each of these beliefs is ultimately

justified by underlying assessment data.

The endorsement-based approach to student modeling is particularly appropriate for tutors

controlled by instructional planners. These tutors place greater demands on a student

model than opportunistic tutors. Numeric calculi approaches are less well-suited because it

is difficult to correctly assign numbers for evidence reliability and rule plausibility. It may

also be difficult to interpret final results and provide suitable combining functions. When

numeric measures of uncertainty are used, arbitrary numeric thresholds are often required

for planning decisions. Such an approach is inappropriate when robust context-sensitive

planning decisions must be made. Instead, the ability to examine beliefs and justifications is

required. This report presents a TMS-based implementation of the endorsement-based

approach to student modeling, compares this approach to ahematives, and provides a

project history describing the evolution of this approach.
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1. Introduction - limitations of numeric student models

This report describes a symbolic (i.e., non-numeric) means of coping with uri_ertalnty in

student modeling. Rather than represent the uncertainty of the tutor's beliefs with numeric

degrees of confidence the student model explicitly records arguments (called endorsements

in [Cohen 85]) for and against each belief. No numeric combining functions or

interpretation of numbers is required. Instead the different kinds of arguments are

compared based on the reliability of their evidence to decide if belief or disbelief in a

proposition is justified.

Previous research on the Blackboard Instructional Planner [Murray 90], a planner-

controlled tutor for teaching troubleshooting for a complex hydraulic-electronic-mechanical

device, illustrated some of the shortcomings of numeric student models. That research

motivates the research presented here. Before reviewing the earlier research, we briefly

consider the role and demands placed on the student model in both planning and non-

planning (i.e., opportunistic) tutors.

In opportunistic tutors the student model may be used to decide what issues to discuss

(e.g., WEST [Burton and Brown 82]) or what topics to explore (e.g., MENO-TUTOR

[Woolf 84]). Other uses are problem selection (e.g., BIP [Barr 76]) or hint generation

(e.g., WUSOR-II [Carr 77]). Frequently diagnostic student modeling is used to model a

student's problem solving and its correctness (e.g., PROUST [Johnson 86]).

w
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The student model for a planner-controlled tutor must not only address these issues but

others. A sophisticated student model is needed to track plans and allow customized plan

generation based on an initial assessment of the student. It must interpret different kinds

of assessments (student data) such as the student's background, any student self-

assessment, test questions, any instructor assessment, student-initiated questions, and

student problem-solving actions. Typically, the student model for opportunistic intelligent

tutoring systems will handle a much more limited range of assessment data and have fewer

responsibilities. For example, those tutors that act as problem-solving monitors (the most

common paradigm) predominandy focus on assessing problem-solving actions for hint

generation and future problem selection (e.g., IMTS [Towne et al 89]).

The student model of the Blackboard Instructional Planner illustrates some of the

shortcomings of numeric student models and how they can limit tutor capabilities. That
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student model is an overlay [Carr and Goldstein 77] of a semantic net representation of

domain concepts. Associated with each concept is a number representing the tutor's

confidence that the student has acquired the concept. The numbers are initialized from a

pre-instruction questionnaire according to inferred cognitive stereotypes [Rich 79] and later

adjusted according to the student's test and problem-solving performance.

With this numeric approach the tutor tended to either replan at the wrong times or not replan

when it should. The problem was that planning decisions could only rely on these

numbers, which were compared to threshold values. Replanning can easily go awry

because of the difficulty of determining precisely how to adjust the numeric weights to

integrate the different kinds of assessment data, and because of the arbitrary nature of the

three planning thresholds that were used. One threshold measured when a concept was

learned, another when it was forgotten, and a third when an instructional activity was

making insufficient progress. When the thresholds and updates were adjusted

conservatively the planner tended not to replan when it should. When they were adjusted

less conservatively the planner tended to replan when it should not.

These problems led to the development of an endorsement-based student model (ESM).

The remainder of this report describes the endorsement-based approach and its evolution,

compares it to altematives, and argues that it is particularly appropriate for planner-

controlled tutors.

2. The endorsement-based aooroach to student modeling

The key aspects of the ESM are:

1. Explicit representation of tutor beliefs and their endorsements- propositions represent

the tutor's beliefs about the student's skills along with arguments for and against those

beliefs.

2. Inheritance of endorsements - an ISA hierarchy represents the subject matter. The

ESM uses the hierarchy to represent the degree to which a student has generalized a

skill. Endorsements for a generic skill (a skill that can be applied to all members of a

class) are inherited down the hierarchy towards subclasses (or instances) representing

more specific skills. Endorsements against a generic skill are propagated up towards

superclasses representing more general skills.

B
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3. Wide variety of assessments - several different kinds of information, varying both

in specificity, source, and reliability are incorporated.

4. Lexicographic comparison of arguments - endorsements are sorted into equivalence

classes according to reliability. This ordering allows lexicographic comparison of pro

and con arguments. The result of the comparison is a label for each belief - believed-

true, believed.false, unknown (no data), or uncertain - and an indication of the

decisive argument, if any, that indicates how well justified a belief is.

5. Consistency between endorsements and labels - the student model explicitly

represents the justification for each endorsement and tutor belief. All justifications are

ultimately grounded in assessments (student data). If endorsements become invalid or

labels change then consistency is maintained between derived endorsements and any

labels that depend on them.

These features are best illustrated by examples.

2.1 Examples of endorsement-based student modeling

This section presents a scenario demonstrating the endorsement-based approach. Assume

the student is learning to troubleshoot a device and must first learn how the device and its

individual parts operate. Figure 1 shows a class hierarchy of parts of the device. Classes

of parts are connected to subclasses by solid arrows. These in turn are connected to part

instances by dotted arrows. The tutor's goal is to ensure that the student understands the

operation of all of the device's hydraulic valves. This goal (a generic skill) is represented

by the proposition SK(op, hydraulic valves).
HYDRAULIC

VALVES

LATCHABLE DIRECTIONAL
VALVES VALVES

UVK4 UVK9 UVKIO UVK5 UVK6

Figure 1. Class hierarchy of device parts
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SK stands for "student knows" (a notation adopted from [Peachey and McCalla 86]). The

general form is SK(skill, node) where node is either a class or instance. SK(op, UVK4)

is believed true when the tutor believes the student understands the operation of the UVK4

valve. SK(op, latchable valves) is believed true when the tutor believes the student

understands the operation of all the latchable valves - UVK4, UVK9, and LrVK10. So, if

SK(op, UVK4) was believed false then SK(op, latchable valves) would also have to be

believed false.

The scenario below illustrates how an endorsement-based student modeling system can

cope with several different kinds of assessments, can infer new beliefs based on inheritance

(the links in Figure 1), and can retract beliefs that are no longer justified. It also shows

how pro and con arguments are compared.

L

Table 1 summarizes the scenario. The top row lists the labels of the five left-most nodes in

Figure 1. These nodes are the only ones whose labels change in this scenario. In the top

row "Latch" and "Hydra" stand for "Latchable Valves" and "Hydraulic Valves"

respectively. Below each node are two columns marked + and -. For each node x all pro

arguments for SK(op, x) appear in the + column and all con arguments appear in the -

column. The letters are abbreviations for different kind of arguments. For example, D

stands for a default belief. The other kinds of arguments and their abbreviations are

shown in Table 2; they will be explained as the scenario unfolds. Boldface arguments are

the deciding arguments in determining the label of propositions, i.e., they cast the deciding

vote for or against a proposition. If an argument is in boldface underneath a - column with

label node then SK(op, node) is believed-false. Similarly, a boldface argument in the +

column indicates a label of believed.true.

Initially the tutor assumes that the student does not know how the valves operate. These

default assumptions are indicated by the three Ds in line 1. Since there are no arguments

to oppose these each node I is labeled believed-false. The remaining two nodes receive

the labels unknown as no arguments are recorded for them yet.

m

w

IActually for each node the predicate SK(op,node) is assigned the label. Nodes are referred to instead of

their corresponding SK predicates for succinctness.
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Event UVK4 UVK9 UVKI0 Latch

+ + + +

1. Defaults D D D

2. Self-assess D D D ST

3. Inherit l B D I B D ! B D S T
beliefs

4. T/F IB D IB D IB D ST

[question T/F
5. M-C IB D IB D IB D ST

question T/F M-C
6. S/A IB D [13 D I13 D ST

question T/F M- C S / A
7. Trend - IB D IB D IB D ST TR

samples T/F M-C S/A
8. Retract tB D t_ D t_ D ST TR
inherited T/F M-C S/A

9. Propagate D M-C D D ST TR
disbelief T/F S / A
10. Tutor T U D M-C D D ST TR

presentation T]F S / A
11. Retract T U D M- C D D S T qa_

arguments _/F S/A
12. Inherit as T U M-C D IB D ST
before IB IB S/A

13. Tutor T U M-C D IB D S T

presentation IB IB S / A
TU

14. Retract T U M-C D 133 D S T

arguments IB IB S / A
TU

15. Tutor T U M-C IB D ST

presentation IB IB T U S/A
TU

16. Retract T U M-C IB D ST

arguments IB IB T U g/-A
TU

17. Trend - T U M-C IB ST
labels IB IB T U LT

TU

18. Trend - T U M-C 113 ST LT
labels [13 IB T U LT

TU

Table 1. A summary of PRO and CON arguments for the scenario

llydra
+

PR

PR

gR

Line 2 shows the student's self-assessment (ST) of his knowledge of the operation of

latchable valves. This is recorded as a pro argument under Latch as the student claims to

understand how this kind of valve operates. The node Latch now receives the label

believed-true.

N
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Line 3 represents three new endorsements inferred by inheritance. As shown in Figure 1,

if the student understands how latchable valves operate then he should understand how

UVK4, UVK9, and UVK10 operate. Each new inherited belief (IB) overrides the

previous default (D) beliefs, changing the labels from believed-false to believed-true.

As shown in Table 2, each endorsement is classified into an endorsement reliability class

according to the kind of endorsement and whether it is positive or negative. Table 2 lists

the different kinds of endorsements used in the scenario, in order from most credible to

least credible. Consistent data trends (TR) are considered the most reliable, followed by

student claims of ignorance (ST-) and then specific counterexamples to generic skills (PR-

). Tutor presentations are considered the next most reliable evidence (TU+), followed by

arguments to label parent nodes the same as the majority of their children (LT). A student's

claim to know some skill (ST+) is considered less reliable, but answers to individual

questions are even more suspect. However, a given short answer question (S/A) is

considered more reliable than a multiple choice question (M-C), which in turn is considered

more reliable than a true false question (T/F). The weakest beliefs are those based on

inheritance (IB+) or defaults (D).

Continuing the scenario, the tutor asks one question on each latchable valve in lines 4, 5,

and 6. Only the second question is answered correctly. As arguments based on test data

are more strongly believed than inherited beliefs or default beliefs the labels for UVK4 and

UVK10 are now believed-false once more.

A new kind of argument, called a data trend, is inferred by the student model from these

three questions. A data trend is only inferred based on test questions or other kinds of

student performance, and only when a clear majority of the data is pro or con. A data

trend is considered the most reliable kind of endorsment since it is based on multiple snap-

shots of student performance. Individual questions (T/F, M-C, or S/A) are more liable to

noise - lucky guesses, confusion, typos, etc.

A negative data trend is added as a con argument to the node Latch in line 7 as two out of

three questions on latchable valves were missed. It overrides the student's self-assessment

causing the label of Latch to become believed-false. The previous inherited beliefs,

which depended on Latch being labeled believed-true, are now retracted as shown in line

8 by a strike through each retracted belief (tB).
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Class

Data trends

Negative student self-
assessment

Propagated disbelief

S_¢mbol
TR

ST-

PR-

Tutor presentation TU+
Label trends LT

Positive student self- ST+
assessment

Short-answer S/A

Multiple-choice M-C
True-false T/F

Inherited belief IB+

Description

Consistent trends in student performance
The student says he does not know something

Default belief D

Argue that skill x cannot be known for class y as it is

not known for class (or instance / z and _, includes z

Ar[,,ue that skill is known as tutor has covered it
Assign class X the same label as most of its children

i iii ii

The student says he knows something

The student answers a sin_:le short-answer c_uestion

The student answers a single multiple-choice question

The student answers a sin[le true or false question

Argue that class (or instance) y is known as its superior
class x is known

Default belief

Table 2. Endorsement reliability classes, in order of believed reliability

If the student does not understand how latchable valves operate then he cannot understand

how hydraulic valves operate. That is why a PR (for propagated disbelief) argument is

added to the minus (con) column under Hydra in line 9. That causes Hydra to become

labeled believed-false.

W

W

m

w

m

w

Now the planner decides to review the operation of the valves. Lines 10, 13, and 15

indicate these tutor presentations. After a tutor presentation prior test results or default

beliefs indicating lack of the knowledge covered are no longer necessarily valid and are

retracted. Such retractions occur in lines 11, 14, and 16. When the TR argument is

retracted in line 11, the label for Latch is recomputed. It becomes believed-true again,

which in turn causes the inherited endorsements (IB) for UVK4, UVK9, and UVK10 to be

reintroduced in line 12.

After the final presentation a different kind of trend is inferred called a label trend. The

earlier data trend depended on test data• This second kind of trend reflects a trend among

the labels (not data) of the children of a node. The labels must be justified by arguments

that are at least as strong as tutor presentations, which is why no label trend was inferred

from the defaults in line 1. Lines 17 and 18 show label trends added to Latch and Hydra,

assuming that Directional Valves (see Figure 1) was already labeled believed-true

because of a sufficiently strong argument.

slalr

J i
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The label trend endorsement (LT) for Hydra causes SK(op, hydraulic valves) to become

labeled believed-true. This completes the scenario as the tutor's goal is now achieved.

Note that the strength of a belief can be measured by the reliability of its deciding argument.

For example, belief that the student knows how UVK9 operates increases from line 3 (IB)

to line 5 (M-C) to line 13 (TU) as shown by the ordering in Table 2. If the planner had

wanted stronger justification before believing its goal was achieved, it could have required

a stronger deciding argument for SK(op, hydraulic valves), such as an argument of the

data trend class. In that case further questioning of the student after the tutor presentation

would be required to gather such data.

The key points illustrated in this scenario are:

1. Many different kinds of assessments are handled in the ESM - three different kinds

of test questions were used along with default beliefs, inherited beliefs, student self-

assessment, and changes inferred from tutor presentations.

2. No numeric degrees of belief are required for evidence - the ordering of

endorsements according to their reliability is sufficient.

3. No numeric combining functions are required - all arguments are retained unless later

retracted. Unlike numeric approaches, each argument's contribution to a label can

always be determined.

4. Inferred beliefs reflect the inheritance hierarchy of the subject matter - the inheritance

in Figure 1 is enforced by the ESM. The ESM uses the class hierarchy to represent the

extent to which the student has generalized a skill.

The lexicographic comparison routine was only demonstrated in the scenario with simple

cases. In general an arbitrary number of arguments can be compared. They are first

sorted into equivalence classes of reliability, such as those shown in Table 2. 2 Then,

starting with the most reliable class the pro and con arguments in that class are paired. If

one or more pro arguments are left over then the label for an SK proposition in question

2Of course other kinds of assessments, evidence reliability classes, class orderings, and assessment to class

mappings can be used in an ESM. Table 2 illustrates just one set of choices.

D
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will be believed-true. If one or more con arguments are left over it will be believed-

false. If all arguments can be paired then the next most reliable class is considered to

break the tie. If a tie is never broken then the label is uncertain. If there are no arguments

at all it is unknown.

2.2 'Implementation

The ESM is implemented in a layered fashion over a justification-based truth 3 maintentance

system (JTMS). It also uses a simple forward-chaining rule-based inference engine and

assertional database called the JTRE (Justification-based Trivial Rule Engine) that makes

use of the JTMS. These two systems were obtained from the documentation and code of

_e Kleer et al 89] and were developed prior to the research described here.

The role of the JTMS is to ensure consistency between inherited and propagated beliefs and

those they depend on, and to notify the lexicographic comparison routines that ESM labels

need to be recomputed when such beliefs are retracted or previous endorsements are un-

OUTed (i.e., reintroduced). The assertional database (JTRE) stores propositions

representing SK predicates, their ESM labels, and the pro and con arguments that justify

the labels. Forward-chaining JTRE rules carry out the propagation and inheritance of

endorsements and invoke the lexicographic comparison routines when new arguments

should be considered.

3. Related work in student modeling _nd uncertain reasonin_

Now we consider related work in student modeling and uncertain reasoning. Numeric and

symbolic approaches to uncertainty are discussed for both ITS and non-ITS applications.

3.1 Numeric approaches

Possible numeric approaches to representing uncertainty include certainty factors [Shortliffe

and Buchanan 75], Dempster-Shafer theory [Shafer 76], fuzzy logic [Zadeh 78], or use of

Bayes' Rule. These approaches are discussed in [Bonissone 87], along with the following

problems:

3Justification-based truth maintenance systems are distinguished from other kinds of TMS by having nodes

that are either IN (believed) or OUT (not believed). The only kind of constraints that can he expressed are

logical implications. In contrast, an ATMS (assumption-based TMS) has labels indicating when nodes will

be believed (i.e., what sets of assumptions must he true) and an LTMS (logic-based TMS) allows even

more general logical constraints (e.g., either x is true or y but not both) [De Kleer et al 89].

B
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1. Inability to distinguish uncertainty from lack of evidence - if a single number is used

to represent degrees of belief then typically 0 will represent both a complete lack of data

and uncertainty due to a balance of conflicting data.

2. Normalizing PRO and CON evidence - if on the other hand two numbers are used so

the distinction above can be made, then the amount of evidence for and against a belief

may be normalized, This results in disproportionate weighting of a single piece of

evidence that contradicts several other pieces of evidence.

3. Difficulty of assigning numbers - all of these approaches require numbers to be

assigned to indicate the reliability of each piece of evidence.

4. Difficulty of interpreting numbers - with the exception of approaches based on

Bayes' Rule, it can be hard to provide consistent and meaningful semantics to the

numbers assigned to derived beliefs.

5. Obscuring the source of derived beliefs - no records are maintained showing how

numeric degrees of belief have been accumulated from different sources of evidence.

6. Arbitrary combining functions - there may be several consistent ways of combining

conflicting data reflecting conservative, optimistic, or moderate viewpoints.

7. Stringent assumptions - Bayes' Rule can be simplified given strong requirements

regarding the mutual independence of each piece of evidence and the exhaustivity and

disjointness of the hypotheses. Unfortunately, these requirements, or the need for a

large number of conditional probabilities (if the simplifying requirements are lifted),

often render the approach impractical.

Formal approaches to handling uncertainty are infrequently used in intelligent tutoring

systems, with some exceptions. Certainty factors have been used in GUIDON [Clancey

87] but the initial assignment and subsequent updating within tutorial rules is somewhat

arbitrary. A different approach, based on fuzzy logic, is being applied to the TAPS

intelligent tutoring system [Derry 89] to handle imprecision in measuring the correctness of

student inputs. 4

4In contrast, there is no uncertainty in the assessments the ESM receives. Instead there is uncertainty in

deciding which tutor beliefs are justified when there are conflicting assessments.

!
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Frequency of use measures or parameter adjustment approaches, neither based on

probability theory, are the most commonly used numeric approaches to uncertainty in ITS.

WEST [Burton and Brown 79] and WUMPUS [Stansfield 76] rely on the frequency of use

approach. They measure how often a skill was used compared to the numbers of times it

could have been used. Examples of the parameter-adjustment approach include the

Blackboard Instructional Planner (discussed earlier), Kimbalrs integration tutor [Kimball

82], MENO-TUTOR [Woolf 84], and the user modeling system GRUNDY [Rich 79].

3.2 Non-numeric approaches

Typical non-numeric symbolic student models used to represent student problem-solving

strategies or knowledge include

1. Procedural networks - such as BUGGY's [Burton 82] procedural network to

represent subtraction skills.

2. Rules and real-rules - such as the rules of LMS [Sleeman 83] representing correct

and incorrect linear algebra simplifications.

3. Plan and bug libraries - such as the loop plans and bug recognizers of PROUST

[Johnson 86] used to understand Pascal programs.

4. Rule application heuristics- such as ACM's [Langley et al 84] representation of

production rules for subtraction. The heuristics the student uses in choosing which rule

to apply next are induced from student solutions.

These student models go beyond overlays by representing incorrect beliefs a student may

have. However, except for ACM, they typically do not address issues of uncertainty other

than by applying averaging or other statistical techniques to reduce the effects of noise in

data [Wenger 87]. The kind of knowledge they focus on is primarily the representation of

subskills required to perform an algorithmic, procedural, or problem-solving task.

As mentioned earlier, the ESM is built over a truth maintenance system (TMS) to maintain

consistency between endorsements and labels. In general, TMSs and nonmonotonic logics

can be used to represent tutor assumptions about the student, and detect contradictions that

arise when tutor expectations do not match student performance (as in [Fum, Giangrandi,

and Tasso 90]). The faulty assumptions can then be retracted and the consistency of the

student model restored. [Huang 90] adopts this kind of approach to enforce default

cognitive stereotypes and switch stereotypes when expectations are contradicted.

m
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The difficulty with TMSs (without extensions) are the restricted labels of TMS nodes. As

there win frequently be conflicting justifications for and against any particular belief about

the student the TMS will have to resolve or tolerate many contradictions. Resolving the

contradictions may require too much student interrogation at an inappropriate time.

Alternatively, the beliefs can just be considered unknown, but that is not much use to the

planner.

Cohen first presented endorsement theory in a portfolio recommendation program called

FOLIO [Cohen 85]. That program weighed pro and con arguments for various

investments and intermediate conclusions, such as whether a client would accept high risk

investments, in making its recommendations.

CYC [Guha and Lenat 90] uses a similar approach called argumentation. In this approach

alternative defaults are compared and specific preference relationships between defaults

(e.g., assumption A is preferred to assumption B) are used to decide which is the most

compelling. The endorsement based approach is similar except it uses a less flexible means

of weighing arguments.

4. Project history

We briefly review this project's history here; a more detailed discussion appears in the

appendix. As noted in the introduction, this project evolved from shortcomings of the

Blackboard Instructional Planner arising from the numeric student model it used. The

original proposal submitted to RICIS and AFHRL proposed investigating the application of

TMSs to improve the student model. Once the project began it became apparent that a TMS

alone was insufficient and further extensions to support weighing conflicting evidence were

required. This led to the endorsement-based approach discussed in the design document

submitted to RICIS and AFI-IRL.

Once implementation began, five prototype ESMs were implemented. Their major

differences are shown in Table 3. The first prototype used a heuristic measure of the

weight of pro and con arguments. It did not use the JT S or JTRE. The second

prototype switched to a lexicographic comparison to weigh evidence. It also incorporated

the JTMS and JTRE, but only for use in explaining label assignments and to provide an

assertional database. It did not use the TMS to track dependencies. The third prototype

distinguished between performance samples (individual test questions) and data trends

drawn from performance samples. It also placed evidence superseded by tutor
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presentations in a special shadowed class to discount its reliability. The next ESM clarified

the semantics of the knowledge base, which had been unclear in the previous prototypes.

It changed the level at which teaching and assessing was done from concepts to attributes

of concepts. It also defined generic skills. The fifth and final ESM used the TMS to

maintain dependencies between endorsements and other endorsements that were propagated

or inherited, and any labels depending on those endorsements. In this final ESM there is

no special class of shadowed data. Instead once data is superseded by tutor presentations it

is withdrawn (retracted). The TMS ensures that dependent inferences are also withdrawn.

Special JTRE rules recompute labels when endorsements change in this process. For more

details of the five ESM prototypes see the appendix.

ESM TMS

#

1 NO

2 YES

3 YES

4 YES

5 YES

Clear Data Comparison Retraction

semantics trends method

NO NO Heuristic NO

NO NO NO

NO YES

YES YES

YES YES

Lexico_:raphic

Lexico_:raphic

Lexico_raphic

LexicographJc

Table 3. ESM prototypes developed during project.

Shadowed

Shadowed

YES - TMS

retraction

5. Conclusion

This report has described problems with numeric approaches to representing uncertainty in

student models. These problems have motivated the development of an endorsement-based

approach. An endorsement-based student model (ESM) is particularly suitable for planner-

controlled tutors due to the greater demands they place on the student model. These tutors

rely on the student model to generate, track, and revise instructional plans. They must

query the student model and interpret the results to decide if a current activity has achieved

its objective, if a previous objective needs to be reachieved, or if a pending objective has

already been achieved. The endorsement-based approach supports these kind of queries by

allowing context-sensitive planning decisions to be made that rely on an examination of

tutor beliefs and the evidence that justifies them.
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The key research contribution of this work is the symbolic approach to uncertainty of the

ESM. In this approach the tutor's beliefs about the student's knowledge are represented

explicitly. Arguments for and against these beliefs are recorded, and justified in terms of

underlying assessments. The ESM weighs these arguments by sorting arguments

according to evidence reliability and then performing a lexicographic comparison.
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Appendix - A more detailed history of the project

This appendix describes the project's history in more detail, focusing on how the ideas

presented in this report have evolved. We review changes from the original research

proposal, to the design document, and then through the four prototypes leading to the final

implementation. The ideas have evolved from applying TMS to student modeling, to

applying endorsements, and then to clarifying the representation of the student model, the

meaning of the endorsements, and the underlying implementation.

L

Research proposal

r

The original research proposal (titled "A Research Proposal: Applying Machine Leaming

Techniques to Student Modelling and Diagnosis") discussed possible broad applications of

truth maintenance systems or algorithmic debugging methods [Shapiro 83] to different

components of the Blackboard Instructional P|_er (BB-IP). The most specific approach

discussed was to represent part-state change rules with JTRE rules that made explicit

assumptions that parts were operating correctly. Then if a later observation contradicted a

result predicted by the rules then the set of assumptions underlying the contradiction would

indicate the possibly faulty parts. The approach would be extended to a student modeling

application by adding two different kinds of assumptions: first, that the student knew a

rule, and second, that he applied it. Then if the tutor made a prediction that differed from

the student's the set of underlying assumptions would indicate the rules the student might

not know or might not have applied.

Design document

The design document (titled "Complex Student Modeling for Planner-controlled tutors")

proposed replacing the TMS approach with the use of endorsements. The TMS approach

was abandoned because of the reasons discussed earlier: fil'st, plausible not purely logical

reasoning is required and second, there must be some way of distinguishing different kinds

of uncertainty in a more refined way than IN or OUT; or TRUE, FALSE, or UNKNOWN

labels. Furthermore, the focus on only identifying the student's knowledge and application

of rules that predict device operation appeared too narrow.

.taw
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The design document proposed compiling a subject matter representation into a student

model with multiple links to represent possible propagation paths of endorsements. Part of

the complexity would arise from the variety of different kinds of things that could be

leamed (facts, rules, principles, and procedures). Additional complexity was introduced

by allowing several different kinds of l_s in the subject matter representation such as

ISA, PART-OF, INSTANCE, REFINES, CAUSES, and PREREQUISITE. The student

model also attempted to represent to what degree a student had learned a concept. Three

stages were proposed, based on [Brecht 90] (in turn based on [Bloom 56]), to indicate

whether a concept was known factually, analytically, or synthetically. A means of

interpreting assessment data was proposed whereby endorsements would be propagated

along links according to the student's stage of leaming and whether the endorsements were

pro or con. A set of rules called conflict resolution rules was proposed to weigh conflicting

pro and con evidence. A heuristic measure of utility to choose new assessments was also

proposed.

Prototypes

Not surprisingly, what was implemented was less complex and did not address all of the

issues regarding the different kinds of things that can be learned and their different stages

of learning. The compilation of representations and the different levels of knowing a

concept were not implemented. It was first necessary to clarify the semantics of the

knowledge base, the propagation and weighing of endorsements, and the underlying

implementation. The clarification occured through the implementation of five

endorsement-based student model prototypes that will be referred to as ESM 1 through

ESM 5. ESM 5 is the final implementation discussed in this paper. The differences

between these implementations are summarized in Table 3 and discussed in more detail

below.

ESM 1: Using heuristics to weigh evidence

E

z

i

The first prototype did not use any truth maintenance system. Rather than explicitly

represent propositions a semantic network of concept nodes was created. Each concept

node was a record that not only indicated the other concept nodes that it was linked to, but

also the pro and con arguments for believing the student had acquired the concept. Each

r.
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argument was itself a different kind of record with slots indicating the kind of assessment

the argument was based on, when the assessment occurred, what node was originally

assessed, and how many links separated the two nodes (source and destination) in the

conceptual network. A heuristic evaluation function was used to compute the strength of

the pro and con arguments for comparison:

priority (arg[i])

Weight = Sum ............................
i delay * distance * direction

Priority is a number indicating the strength of the underlying evidence. Delay is

proportional to how long ago the argument's assessment occurred and is at least 1.

Distance is proportional to how far away in the conceptual network the node originally

assessed was and is also at least 1. Direction is either 1 or 2 to measure the plausibility of

the direction of propagation within the network. It is l for pro evidence propagated

downward, or for con evidence propagated upwards, as this is consistent with the

semantics of inheritance. It is 2 for pro evidence propagated upward as the evidence is

weaker that the student knows a parent concept given only that he knows a subordinate

concept. It is also 2 for con evidence propagated downwards as the fact that the student

does not know some parent concept does not necessarily imply that he does not know any

of the parent's children concepts.

The strength of the pro and con arguments was compared to assign node labels. This

approach was not very satisfactory as it still relied on numbers and there was no more

refined explanation for label assignments other than the results of comparing two numbers.

E
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Other disadvantages were the coarse-grained and ill-defined knowledge representation and

the unclear semantics of the propagation of endorsements. These deficiencies led to the

next ESM.

ESM 2: Using the JTMS Io infer and explain labels

The next prototype added the JTMS to provide improved explanations for label

assignments. Propositions were used to represent the conceptual network and its

relationships. A lexicographic comparison of pro and con arguments was used for the first

time. Each proposition also had a second label (either low, medium, or high) indicating

the tutor's confidence in its belief based on the amount of pro and con arguments and the
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degree of conflict between the two sets of arguments. JTRE inference rules were now used

for propagating endorsements. To simplify matters PRO arguments could only propagate

downwards and CON arguments could only propagate upwards.

One problem remaining was how to classify test data. Although test data is more reliable

than other kinds of data when clear trends emerge, individual test questions are not so

reliable due to noise. Thus it was difficult to determine exactly where endorsements based

on test questions should be classified. For example, should the student's performance on a

particular true/false question be given more or less weight than a student's self-assessment

for the same skill? The next ESM addressed this problem.
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ESM 3: Distinguishing between weak and strong evidence

ESM 3 created two separate classes of endorsements for data. One was based on data

trends obtained from performance samples. The second was based on the performance

samples themselves. It included multiple-choice, true-false, or short-answer questions.

The advantage of this distinction is that the first class is less susceptible to noise, and thus

more reliable, than the second class.

In ESM 3 classes of endorsements are first subdivided into two major classes, one for

weak evidence and one for strong evidence. The strong evidence class includes both data

trends and performance samples, along with any other arguments directly based on

assessment data without propagation. The weak evidence class includes everything else -

endorsements based on propagation and shadowed endorsements (discussed next).

Shadowed endorsements are endorsements that are considered dated and only marginally

relevant now. An endorsement becomes shadowed if it is a con argument and a

subsequent tutor presentation covers the same material. The rationale behind shadowing is

that the tutor's presentation has substantially increased the likelihood that the student has

learned the material so previous assessments to the contrary are no longer relevant. But

student learning is not guaranteed by tutor presentations so prior endorsements are not

discounted completely. They remain relevant, but are demoted to the class of weak

evidence even if they were previously strong evidence.
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ESM 4: Clarifying the semantics of the knowledge base

The next prototype clarified the semantics of the knowledge base. Previously the finest-

grained item a student could learn was a concept, such as LrVK4. That grain size is

unsatisfactory as there are many aspects of a concept that can be learned. For example, the

student can learn the operation of UVK4, the common faults of _4, or the role which

UVK4 plays in the operation of the device. Thus it does not really make sense to say that

the student knows the concept UVK4 or does not know that concept. Instead we would

like to be able to say, for example, that the student has learned how UVK4 operates, but

not yet learned what role UVK4 plays or what its common faults are.

A second problem with the previous semantics of the knowledge base was in determining

what it means for the student to know a particular skill for a higher-level concept, such as

knowing the generic skill operation for the class hydraulic valves. On the one hand it could

mean that the student knows how hydraulic valves operate in general but not that he can

necessarily apply this knowledge to any particular valve (e.g., UVK10). Or it could mean

that the student can apply this knowledge to each hydraulic valve in addition to

understanding the common principles of hydraulic valve operation.

To address these ambiguities the grain size of the knowledge base was changed and its

semantics clarified. Now each object in a hierarchy could have one or more attributes and

these attributes were target skills to be learned associated with domain objects. The class

hierarchy of domain objects could then be used to represent to what extent the student had

generalized different skills. So SK(attribute, class) was defined to mean the generic skill

in which the student knows SK(attribute, instance) for each instance of class (the second

of the two meanings given above).

ESM 4 also dropped the second label used to measure the confidence of the tutor's belief as

low, medium, or high. Instead, believed-true and believed-false label assignments

were amended to include the determining arguments used to decide lexicographic

comparisons. The strength of a belief could then be measured by the endorsement

reliability class of the determining argument as discussed at the end of Section 2.1.
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ESM 5: Implementing retraction of endorsements & labels

One failing of the last ESM was that when arguments were shadowed any propagated or

inherited arguments based on them were not. ESM 5 uses the TMS to maintain consistency

rather than adding special rules to ensure that all derived arguments are also shadowed.

The advantage of this approach is that all derived arguments depending on superseded

assessments are automatically retracted. Special JTRE rules detect when a label needs to be

recomputed because one of its endorsements has been retracted.

So in this ESM version there is no shadowing, instead once a tutor presentation teaches

attribute a of class c then all prior assessments showing that the student did not know a of c

are retracted along with any derived conclusions and labels. Labels are recomputed as

necessary.

This version of the ESM is the one presented in this paper.

Conference paper

A conference paper describing the f'mal ESM was submitted to IJCAI-91 under the

Intelligent CAI subarea of the Principles of AI Applications topic. Acceptance or rejection

will not be known until March 20, 1991. This technical report is based upon the

conference paper. The only difference is that the paper did not include either the project

history contained in Section 4 or this more detailed appendix.
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